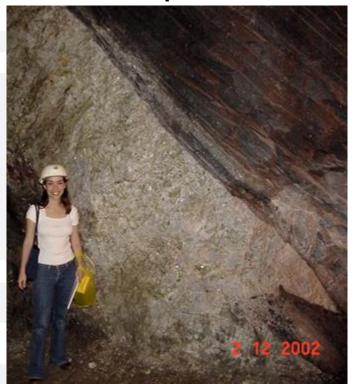


Lithium ores in Eastern Brazilian Pegmatite Province: a review and new discoveries of spodumene-rich pegmatites (SRP)

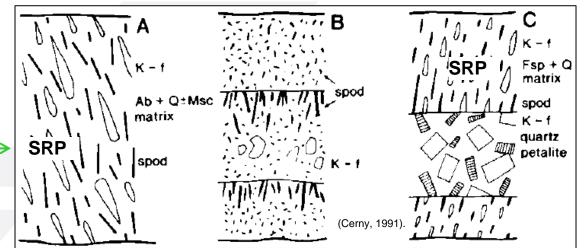
Antonio Carlos PEDROSA Soares



Spodumene-rich pegmatite ⇒ **SRP**

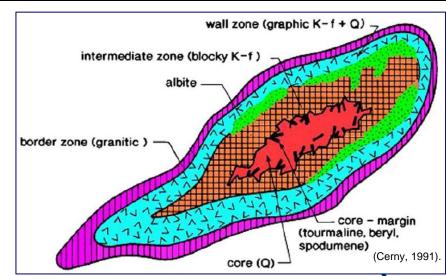
Spodumene + Albite + Quartz + K-feldspar > 90 vol%

Micas + Phosphates + Nb-Sn-Ta oxides + Petalite + ... < 10 vol%



Cachoeira Mine - CBL

SRP


Unzoned to poorly zoned but rather inequigranular!

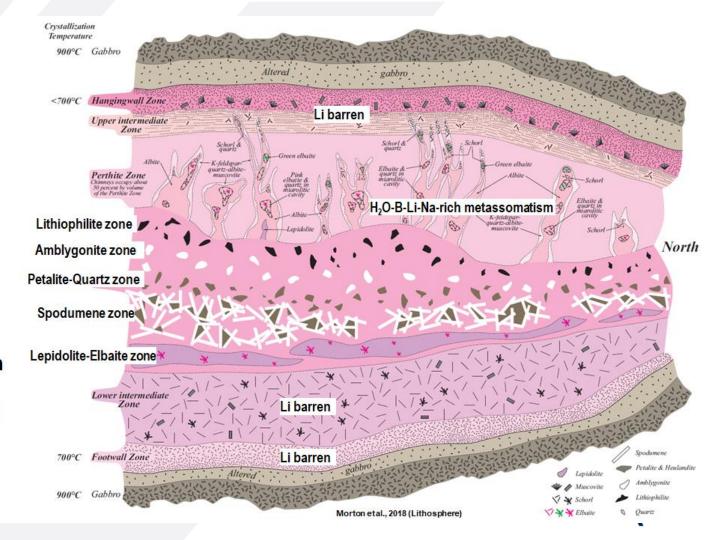
LCT

Zoned to complex zoned:

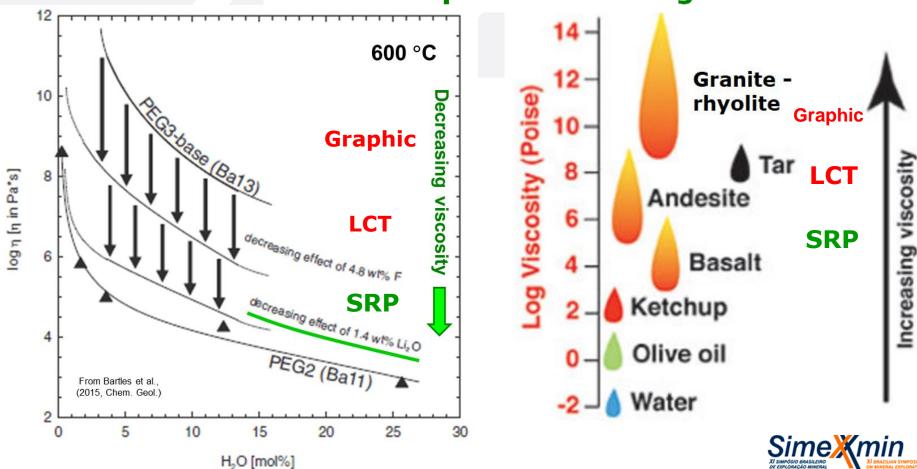
- primary crystallization zones: marginal,
 wall and intermediate zones, and quartz cores
- secondary units: fracture fillings,
 replacement bodies, cavities

Zoning in LCT pegmatites

Graphic texture ⇒ high viscosity at eutectic T:
typical of granitic pegmatites generally poorer in
lithium or with lithium minerals concentrated in very
internal zone and core

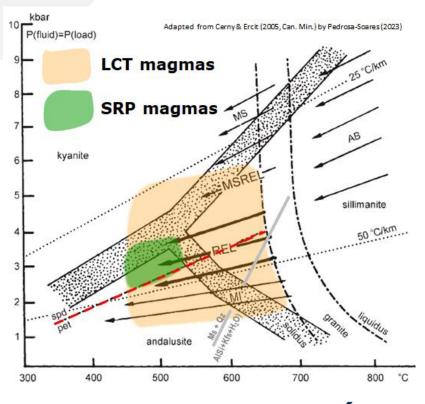

Complex LCT

Stewart Pegmatite


Pala, South California

A thick (≤ 60m),
complex, zoned,

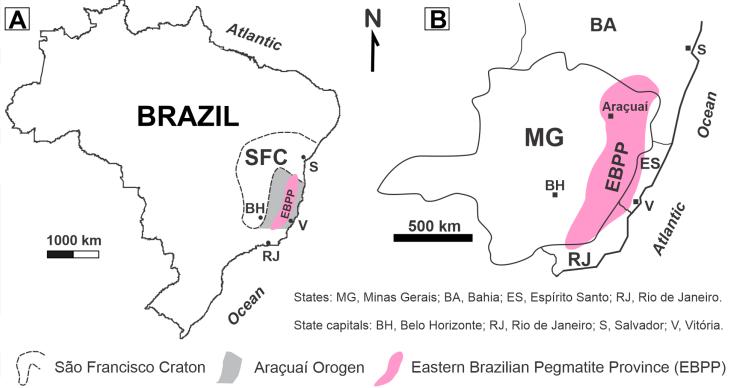
LCT pegmatite rich
in Li-silicates and
Li-phosphates


Lithium: a powerful fluxing!

Class	Subclass	Туре	Subtype	Family
Abyssal	HREE			NYF
	LREE			
	U			NYF
	BBe			LCT
Muscovite				
Muscovite- rare element	REE			NYF
	Li			LCT
Rare element	REE	allanite-monazite		
		euxenite		NYF
		gadolinite		
	Li	beryl	beryl-columbite	
			beryl-columbite-phosphate	
		complex	spodumene	
			petalite	
			lepidolite	LCT
			elbaite	
			amblygonite	
		albite-spodumene	SRP: Spodumene-rich pe	gmatites
		albite		
Miarolitic	REE	topaz-beryl		NVE
		gadolinite-fergusonit	NYF	
	Li	beryl-topaz		
		spodumene		
		petalite		LCT
		lepidolite	Cerny et al., 2012; Elements	

LCT = Lithium-Cesium-Tantalum; NYF = Niobium - Yttrium - Fluorine

LCT versus SRP



CLASSIFICATION OF PEGMATITES OF THE RARE ELEMENT CLASS								
Pegmatite type	Pegmatite subtype	Geochemical signature	Typical minerals					
RARE-EARTH	allanite-monazite	(L)REE, U, Th (P, Be, Nb > Ta)	allanite monazite					
KARE-EARTH	gadolinite	Y, (H)REE, Be, Nb > Ta, F (U, Th, Ti, Zr)	gadolinite, fergusonite, euxenite, (beryl) (topaz)					
BERYL	beryl-columbite	Be, Nb $><$ Ta (\pm Sn, B)	beryl columbite-tantalite					
DERTE	beryl-columbite- phosphate	Be, Nb $><$ Ta, P (Li, F \pm Sn, B)	Beryl, columbite-tantalite, triplite, triphylite					
LCT	spodumene	Li, Rb, Cs, Be, Ta >< Nb (Sn, P, F ± B)	spodumene (amblygonite) beryl (lepidolite) tantalite (pollucite)					
COMPLEX	petalite	Li, Rb, Cs, Be, Ta > Nb (Sn, Ga, P, F ± B)	petalite (amblygonite) tantalite beryl (lepidolite)					
(rare element)	lepidolite	F, Li, Rb, Cs, Be Ta > Nb (Sn, P ± B)	lepidolite microlite beryl topaz (pollucite)					
	amblygonite	P, F, Li, Rb, Cs Be, Ta > Nb (Sn ± B)	amblygonite (lepidolite) beryl (pollucite) tantalite					
ALBITE- SPODUMENE	SRP	Li $(Sn, Be, Ta >< Nb \pm B)$	spodumene (beryl) (cassiterite) (tantalite)					
ALBITE		Ta >< Nb, Be (Li ± Sn, B)	tantalite (cassiterite) beryl					

[.] Classification of pegmatites of the Rare-Element class. (Černý, 1991)

EBPP – Eastern Brazilian Pegmatite Province: 150,000 km²

Energy Vol. 3, pp. 247-253 © Pergamon Press Ltd., 1978. Printed in Great Britain

A VISIONARY MINING ENTREPRENEUR!

LITHIUM ORE IN BRAZIL

KHALIL AFGOUNI and J. H. SILVA SÁ

Arquena de Minerios Metais Ltd., Sãu Paulo, Brazil

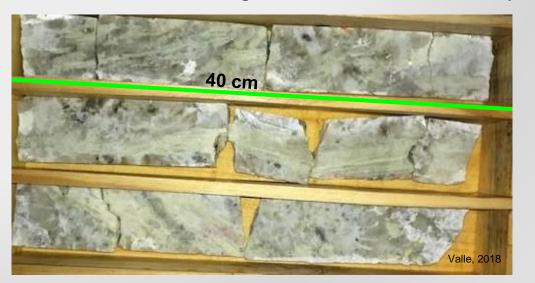
(Received 10 January 1978)

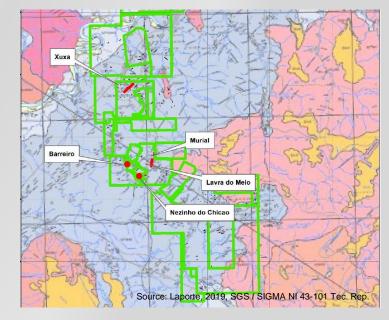
power generation, the development of which is already underway in Brazil. Another new use is in lithium batteries for electric cars and, if this application becomes a reality, Brazil will be a big consumer, ranking at the same level as the most developed countries in the world, with the advantage of being one of the few countries capable of producing its own raw material.

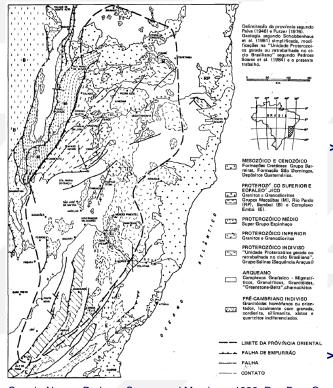
Pegmatite bodies 1D1/1C1 undergound mine entry DECRETO-DE LAVRA - CBL PROCESSO DÍNNA BOZJUZZ/71 Old undergound Mine offices 50 m Adapted map from Romeiro, 1998 (MSc thesis) Swarm of unzoned

CBL - Cachoeira Mine - Since 1991

Swarm of unzoned spodumene-rich pegmatites (SRP)







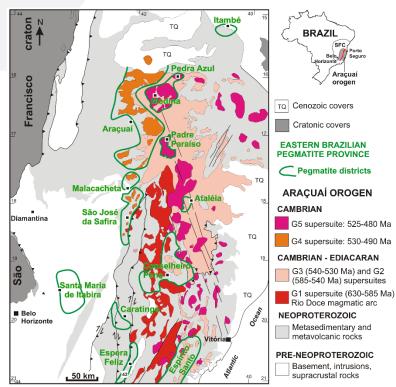
Xuxa SRP: 1700m long x 13m thick x > 300m downdip

Eastern Brazilian Pegmatite Province: after 1/2 century of mapping and studies

Area ~ 150.000 km²

Wholly mapped in 100,000 scale (by CPRM, UFMG-CODEMIG and UFMG-CPRM), and several more detailed mapped areas

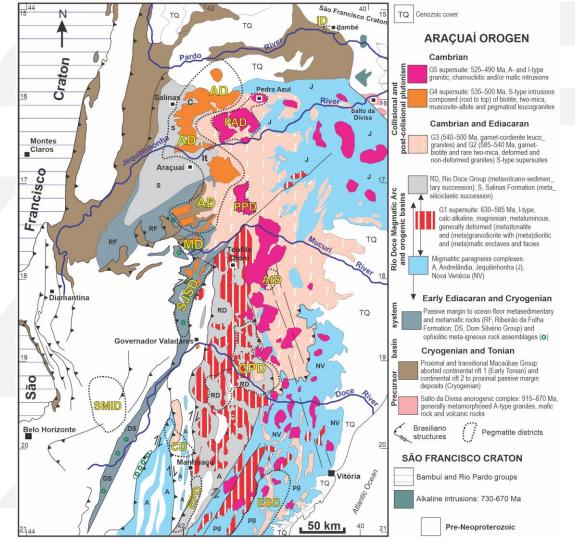
> 800 bulk-rock chemical analysis


Thousands U-Pb, Rb-Sr, Sm-Nd and Lu-Hf isotope data

Thousands mineral chemistry analysis

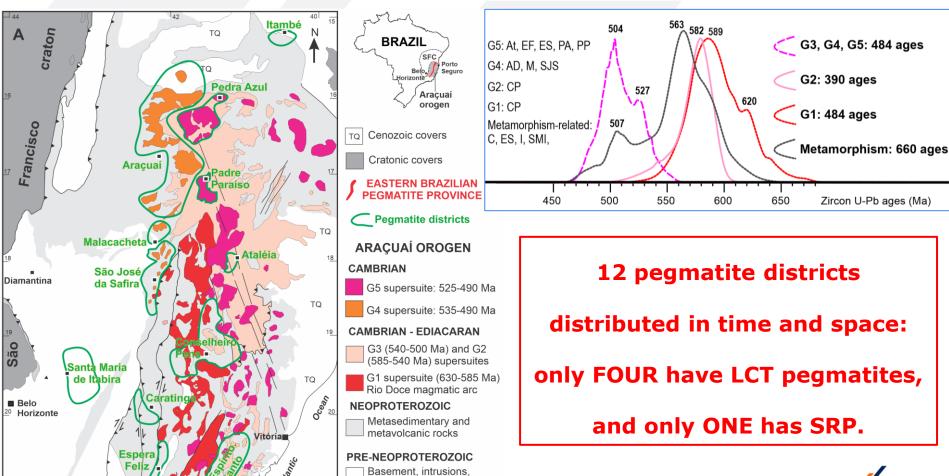
Hundreds of pegmatites studied

Dozens of new mineral species discovered


> 500 x 10⁶ tons of spodumene ore extracted and newly discovered

Modified from Pedrosa-Soares et al. 2011, G.S. London, Special papers

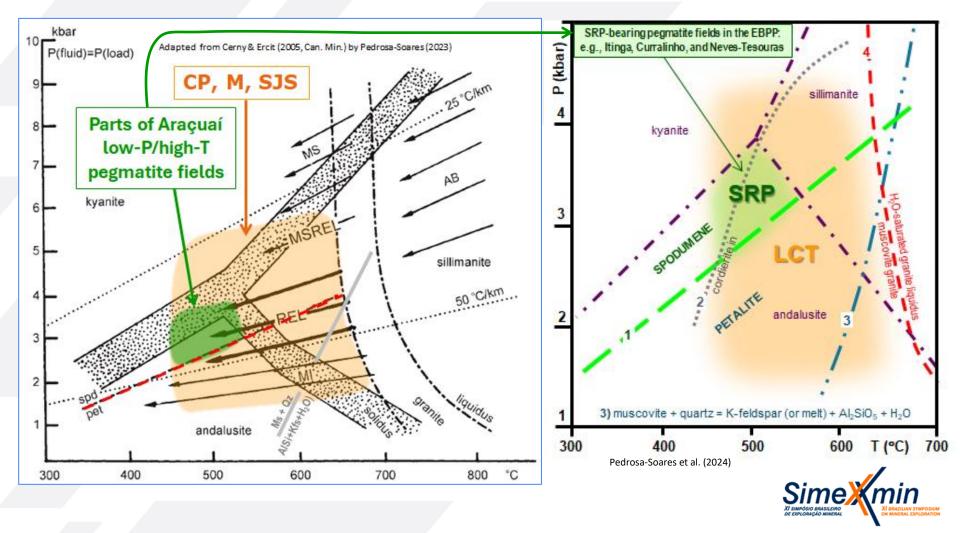
Correia-Neves, Pedrosa-Soares and Marciano, 1986, Rev.Bras.Geoc.


"No rock is accidental!"*

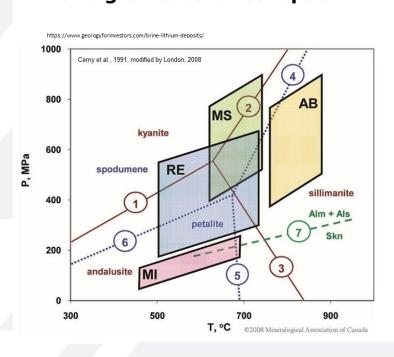
*Lynn Fichter

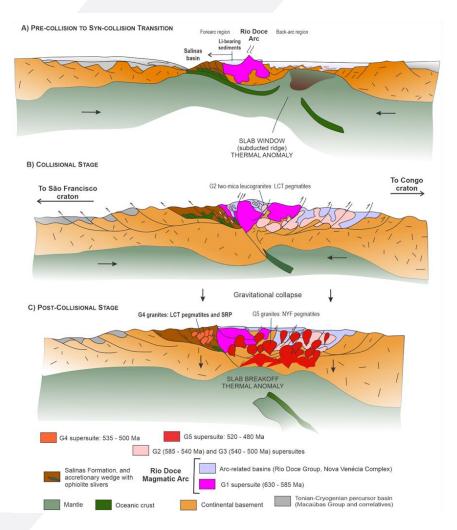
No ore is unpredictable!

Araçuaí Orogen
produced distinct
pegmatite populations,
(LCT, NYF, and SRP)
forming the EBPP.



supracrustal rocks


50 km

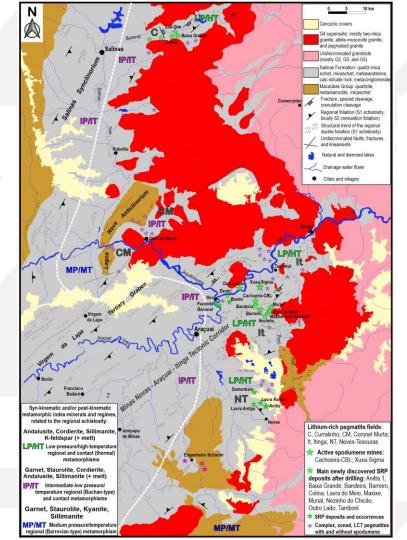


	District	Production record, rare minerals	Pegmatite classification	Geology	Age (Ma)
	ltambé	K-feldspar, quartz crystals, mica, beryl, columbite, monazite	anatectic; muscovite-rare element, REE, allanite- monazite, NYF	migmatitic biotite-homblende gneisses and sillimanite- feldspar-mica schists; post-collisional	508
	Pedra Azul	quartz, beryl (aquamarine), topaz	residual; REE, beryl-topaz, NYF	A-type G5 granite; post-collisional	501
	Padre Paraíso	quartz, beryl (aquamarine), topaz, quartz crystals, goshenite, chrysoberyl	residual; REE, beryl-topaz, NYF	A- and I-types G5 granites and charnockites; post-collisional	519
	Araçuaí	greenish to pinkish spodumene, petalite, lepidolite, Li-phosphates, cookeite, cassiterite, columbite-tantalite, industrial minerals (perthitic K-feldspar, albite, muscovite), tourmalines (elbaite, schorlite), berylore and gems (aquamarine, morganite), pollucite, quartz crystals, cleavelandite, herderite and other rare phosphates, topaz, bismuthinite	element, Li, beryl, complex (spodumene, petalite,	S-type G4 leucogranites; low-P/high-T (andalusite, cordierite, sillimanite) to medium-PT (garnet, staurolite, kyanite, sillimanite) mica schists to paragneisses, metasandstones, calc-silicate rocks, and meta-ultramafic rocks; post-collisional	510-500
	Ataléia	quartz crystals, beryl (aquamarine), topaz, chrysoberyl	residual; REE, beryl-topaz, NYF	A- and I-types G5 granites and charnockites; post- collisional	502
	S. José da Safira	tourmalines (elbaite, schorlite), industrial minerals (perthitic K-feldspar, albite, muscovite), beryl ore and gems (aquamarine, heliodor, morganite), lepidolite, Liphosphates, spodumene, garnet, cleavelandite, columbite-tantalite, cassiterite, bertrandite, microlite, zircon, rare phosphates	residual; muscovite-rare element and rare element, Li, beryl, complex (elbaite, lepidolite, Li-phosphates, spodumene), LCT	S-type G4 and G2 leucogranites; medium-PT (garnet, staurolite, kyanite, sillimanite) mica schists to paragneisses, metasandstones, calc-silicate rocks, and meta-ultramafic rocks; mostly post-collisional, possibly also late collisional (G2)	545, 490
	Conselheiro Pena	industrial minerals (perthitic K-feldspar, albite, muscovite), tourmalines (elbaite, schorlite), beryl ore and gems, spodumene (kunzite), lepidolite, Li-phosphates, quartz crystals, cleavelandite, columbite-tantalite, cassiterite, rare phosphates (arrojadite, barbosalite, brasilianite, childrenite, correianevesite, eosphorite, roscherite, vivianite, etc.)	residual; muscovite-rare element and rare element; Li, beryl, complex (elbaite, Li-phosphates, lepidolite, spodumene), LCT	S-type G2 (and I-type G1?) granites; medium-PT to intermediate low-P (garnet, staurolite, cordierite, kyanite, sillimanite), mica schists to paragneisses, metasandstones, calc-silicate rocks, and meta-ultramafic rocks; collisional (and pre-collisional?)	570-545
	Malacacheta	muscovite, beryl, chrysoberyl; alexandrite, sapphire	residual; muscovite-rare element (and rare element?), beryl, LCT; and anatectic to hydrothermal processes	S-type G4 leucogranites; mica schists, meta-ultramafic rocks, and migmatites; post-collisional	535-500
•	S. Maria de Itabira	emerald, alexandrite, aquamarine, industrial beryl, mica, quartz	quartz-feldspathic hydrothermal deposits, and anatectic pegmatites	ultramafic schists, banded iron formations, migmatites; late collisional to post-collisional	545-500
	Caratinga,	kaolin, corundum (sapphire, ruby), beryl	anatectic; abyssal, ceramic	migmatitic paragneisses; collisional	570
	Espera Feliz	quartz crystals, beryl (aquamarine), topaz	residual; REE, beryl-topaz; NYF	G5 intrusions; post-collisional	500
	Espírito Santo	beryl (aquamarine, heliodor), quartz (amethyst and others), topaz, chrysoberyl, euclase, monazite, rare tourmaline; kaolin	residual, beryl-topaz, allanite-monazite, REE, NYF; anatectic, ceramic	G5 intrusions, post-collisional; migmatitic paragneiss, collisional	570, 500

What do lithium-bearing brines and pegmatites have to do with subduction, magmatic arc, collision and gravitational collapse?

Lithium in brines and clay-rich sediments: Rio Doce Arc

Pegmatites: AB, MS,


LCT: G2

Pegmatites:

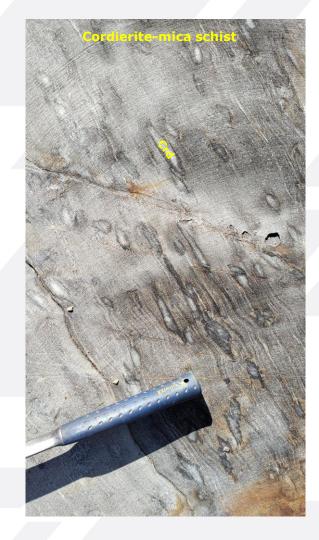
ĽCT: G4

SRP: G4

NYF: G5

New discoveries of SRP (s.s.)

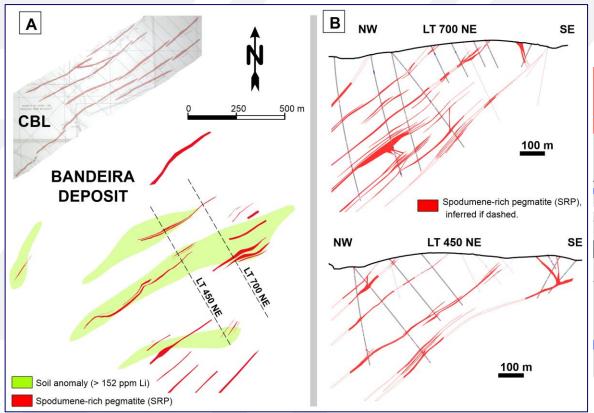
Araçuaí Pegmatite District

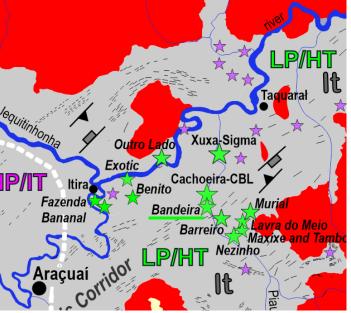

Itinga and Curralinho pegmatite fields

G4 fertile granites

Low-P/high-T metamorphisms

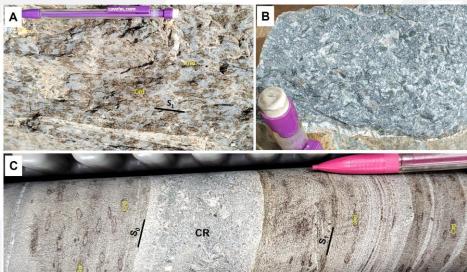
Locally, SRP window (4-2.5 kbar at 550-450 °C)





New discoveries of SRP (s.s.)

Bandeira DepositLithium Ionic Corporation

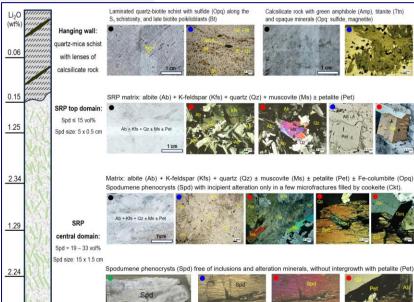


 $Source: https://www.lithiumionic.com/_resources/reports/30112023_PEA_GE21_Final.pdf? v=052310$

Bandeira deposit host rocks:

- A) Banded cordierite-mica schist (Crd, cordierite)
- B) Calcsilicate rock
- C) Drill core showing both host rocks (Crd, cordierite; CR, calcsilicate rock)




Bandeira exposures in an old digging ("shaft", A to D) and the first trench:
A and B) Spodumene (sp) pseudomorphs altered to clay minerals;
C) and D) Li-mica in late metasomatic unit;
E and F) Concordant (to S1) contact of an SRP with unidirectional solidification texture (UST) outlined by partially weathered spodumene (sp)

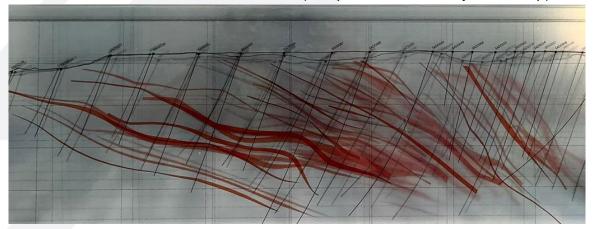
Typical unzoned SRP in the Bandeira Deposit (Lithium Ionic)

Spodumene phenocrysts (Spd) show local spodumene-quartz intergrowth (SQUI), and incipient alteration to cookeite (Ckt). SRP bottom

domain: Spd ≤ 20 vol% Spd size: 7 x 1 cm

tourmaline-mica schist

Contact between the SRP and host schist. SRP chilled margin composed of albite and quartz (Ab + Qz). The host schist is very rich in tourmaline (Tur), and decussate biotite (Bt) and muscovite (Ms) close to the contact. Footwall:



Source: https://www.lithiumionic.com/_resources/reports/30112023_PEA_GE21_Final.pdf?v=052310

New discoveries of SRP (s.s.)



The Colina SRP swarm (in a photo from an acrylic mockup)

Colina Deposit Latin Resources – Salinas Project

Thanks! Obrigado!

pedrosasoares@gmail.com

